Малой мощности трансформаторы – это трансформаторы, в которых мощность составляет не более 5 кВА (соответствующие ГОСТу 19294-84 (СТ СЭВ 4133-83)). Питание происходит от сети переменного тока, частота 50 Гц либо 60 Гц, 1000 В – их максимальное номинальное напряжение. Широкий круг использования трансформаторы малой мощности нашли в питании узлов различной радио- и электронной аппаратуры. Кроме предприятий по производству трансформаторов, созданных в советское время, за последние десять лет появились также новые небольшие предприятия. Благодаря тому, что теперь есть возможность изготавливать трансформаторы малой мощности по техническому заданию заказчика, намного повысилась гибкость при работе с клиентами. В советское время отсутствие такой возможности заставляло проектировщиков оборудования использовать стандартный тип трансформаторов, указанных в справочниках. Трансформаторы не могли охватить все необходимые потребности, несмотря на то, что типов трансформаторов было немалое количество. Это приводило к тому, что разработчик был вынужден пользоваться трансформаторами, в которых запас по мощности и другим величинам был избыточным. К счастью, сейчас предприятия учитывают пожелания заказчика и изготавливают трансформаторы с тем рядом параметров, которые ему необходимы.
Рассматривая тороидальные трансформаторы малой мощности, не трудно заметить ряд преимуществ перед броневыми и стержневыми трансформаторами.
Начиная с 60х годов, XX века, в России тороидальные трансформаторы стали применяться в оборонной промышленности. Причиной тому была с потребность в снижении весовых и габаритных показателей изделий, а также снижения полей разброса при повышенной плотности монтажа техники. По причине большой стоимости в сравнении с трансформаторами рядовой намотки, тороидальные трансформаторы, в изделиях гражданского предназначения, не приобрели большой популярности. Это возникло по причине относительной сложности при намотке провода на замкнутый магнитопровод. В наше время сконструированы станочные оборудования для намоток на тороид, а также системы микропроцессорного станочного управления. Благодаря этому конкуренция трансформаторов такого типа по критерию стоимости, по сравнению с броневыми и стержневыми трансформаторами, приобрела еще больший характер.
С помощью конфигураций и конструкций магнитного провода, можно определить конструктивные признаки. Разбиваются магнитопроводы трансформаторов малой мощности конструктивно на следующие виды: броневые, стержневые, а также тороидальные. Выглядит магнитопровод в виде Ш-образной формы, расположение его обмоток на среднем стержне, частично охватываемые магнитопроводом (т.е. бронируются). Располагая в себе
два стержня с обмотками, магнитопровод стержневого трансформатора малой мощности выполнен в виде П-образной формы. У тороидального трансформатора магнитопровод выполнен в форме тороида (кольцо с прямоугольным сечением). Что касается броневых и стержневых сердечников, они выполнены шихтованными (отдельными пластинами трансформаторной стали) либо витыми ленточными. Изготовляются тороидальные сердечники исключительно витые.
Рассматривая тороидальный трансформатор, мы увидим, что распределение обмоток выполнено равномерно по всей длине магнитопровода, что приводит к понижению массы медного провода, а также резкому уменьшению полей разброса. Магнитопровод имеет круглую форму, что позволяет понизить весовые показатели при тех же габаритных мощностях, которые имеются у трансформаторов с прямоугольной формой магнитного провода.
В помощь проектировщику, для упрощения для составления технических задач, мы привели главные параметры трансформаторов малой мощности:
Подбор номинальной мощности трансформатора малой мощности происходит по таким параметрам: 0.010 кВА, 0.016 кВА, 0.025 кВА, 0.040 кВА, 0.063 кВА, 0.100 кВА, 0.160 кВА, 0.250 кВА, 0.400 кВА, 0.630 кВА, 1.000 кВА, 1.600 кВА, 2.500 кВА, 4.000 кВА. Также разрешены следующие промежуточные значения: 0.012 кВА, 0.020 кВА, 0.032 кВА, 0.050 кВА, 0.080 кВА, 0.125 кВА, 0.200 кВА, 0.315 кВА, 0.500 кВА, 0.800 кВА, 1.250 кВА, 2.000 кВА, 3.150 кВА, 5.000 кВА. Для того, чтобы разработчику определить номинальную мощность трансформатора, необходимо суммарную мощность всех вторичных обмоток разделить на коэффициент полезного действия трансформатора малой мощности. То значение, которое получим, нужно округлить в большую сторону до ближайшего значения из рекомендуемых мощностей.
Зависимость коэффициента полезного действия от того насколько мощна потеря в стали и меди, а также для трансформаторов на 0.010 кВА равна, приблизительно от 75 до 85%. Что касается трансформаторов мощностью 5 кВА, то их КПД составляет от 96 до 98 %.
При выборе номинальных напряжений обмоток, нужно выбрать таким образом, чтобы было соответствие с Госстандартом. Рассмотрим ГОСТ 21128-83. Он определяет напряжения: 6В, 12В, 28.5В, 42В, 115В, 230В. Эти цифры могут быть с отклонениями в меньшую сторону или в большую. То есть +/- 0.5, 1, 2, 3, 5, 10 и 15 процентов. В ряде случаев, если необходимо клиенту изготовить трансформатор, который будет отличаться от ГОСТа, производители идут на встречу и изготавливают в соответствии с его требованиями. Номинальные напряжения вторичных обмоток должны быть заданы при нагрузке, т.е. в номинальных токах обмоток при возникшей температуре.
Напряжением короткого замыкания называют напряжение, происходящее на первичной обмотке при замкнутых выводах вторичной обмотки, а также процесс прохождения номинального тока на вторичной обмотке. Данный параметр задают обычно в процентах исходя из номинального напряжения первичной обмотки; определяется символами DUкз. Если рассматривать трансформаторы с отдачей мощности в 0.010 кВА, тогда для них этот параметр составит от 15 до 20 процентов, а у трансформаторов с мощностью 5 кВА он равен от 1.5 до 2.5 процентов.
Если сравнивать напряжение с полностью нагруженной обмоткой, то под напряжением короткого замыкания мы видим величину относительного повышения напряжения во вторичной обмотке на холостом ходу. Определение данного параметра осуществляется следующим: насколько высоко падение на омическом сопротивлении (т.е. сопротивление постоянного тока), в первичной обмотке и вторичной обмотке трансформатора на уровне номинальной нагрузки.
Рассмотрим определение напряжения холостого хода вторичных обмоток. Под таким напряжением понимают значения напряжений на величину напряжения короткого замыкания. В ряде случаев данный параметр в паспорте трансформатора не указывается производителем. Но, несмотря на это, клиент, при покупке трансформатора малой мощности, должен понимать и знать тот факт, что напряжения вторичных обмоток всегда сильнее, чем их номинальное значение, если отсутствует нагрузка.
Под током холостого хода понимают ток первичной обмотки при незагруженном трансформаторе и номинальном напряжении. Ток холостого хода делят на активный и реактивный. Активный можно определить, рассчитав потери в стали на вихревые токи. Реактивный определяется магнитным током рассеяния. Диапазон тока холостого хода обычно составляет от 1мА (для трансформаторов малой мощности 0.010 кВА) и до 1А (для трансформаторов малой мощности 5 кВА). Если рассматривать наименьшие значения данного значения, то увидим, что они - у тороидальных трансформаторов малой мощности. У них же реактивная составляющая тока намного меньше, чем активная и, собственно, ею можно пренебречь. Рассматривая трансформаторы с мощностью 5 кВА, увидим, что значения тока холостого хода составляют не более, чем 200 мА.
Током переходного процесса включения (т.е. пусковым током) называют наибольшее (т.е. импульсное) значение тока, при котором протекание может происходить по первичной обмотке трансформатора во время включения трансформатора к сети, питающей его.
Нормировку ГОСТом данное значение не проходит, упоминания в трансформаторной литературе о нем практически не встречается. Несмотря на это понимание данного значения очень важно для технического разработчика. Величина пускового тока для трансформатора с мощностью 5 кВА вполне может быть равна от 2000А до 3000А, а также в несколько раз может быть выше величины номинального тока. В более мощных трансформаторах величина пускового тока обуславливается мгновенным значением напряжения во время включения, сопротивления первичной обмотки (достигающее меньше, чем 0.1 Ом), а также внутреннего сопротивления сети, питающей его (обычно происходит превышение первичной обмотки). Предусмотрение мер для ограничений пускового тока трансформатора малой мощности, определенными схемами и техническими решениями – обязательное условие для разработчика. Какие именно меры, сейчас рассмотрим: последовательное подключение с первичной обмоткой ограничивающего резистора, который замыкается через от 0.1 до 0.2 с релейными контактами; последовательное подключение с первичной обмоткой терморезистора, при этом с отрицательным термическим коэффициентом сопротивления; подключение/выключение трансформатора малой мощности при определенной фазе питающего напряжения (можно взять в пример переход напряжения через свое максимальное значение). В случае затруднений применения схемотехнических решений либо если это экономически невыгодно, нужно воспользоваться автоматическими выключателями с большим электрическим запасом. Мы рекомендуем использовать автоматы защитного назначения со следующими характеристиками отключения: «D» (по стандарту IEC/МЭК 898) и «К» (по стандарту ДИН ВДЕ 0660). Автоматы с данными значениями спроектированы только для активно-индуктивной нагрузки (возникающие в трансформаторах, электродвигателях). Они характеризуются повышенной кратностью номинального значения тока (иными словами отношение пускового тока к номинальному значению). Если рассматривать автоматы с характеристикой отключения «D», то их кратность будет равняться около 15, когда для автоматов с характеристикой отключения «К» - примерно 10. Так как производитель трансформатора не может повлиять на степень этого параметра никаким образом, то в любом случае проблемная ситуация с пусковым током должна решаться разработчиком аппаратуры,
Превышением температуры (т-ры перегрева) называют разницу между температурой трансформатора и температурой окружающей среды (как правило, обычно 25ºС) во время работы трансформатора на номинальную загруженность. Как правило, температура трансформатора равняется сумме температур перегрева, а также окружающей среды. При производстве трансформаторов малой мощности, производителем проверяются технические условия (ТУ) допустимой температуры перегрева от 50 до 60 градусов по Цельсию, а температуры окружающей среды, достигнутой предела – 55 градусов по Цельсию. Для определения предельной температуры трансформатора, используют класс нагревостойкости по ГОСТ 8865- 70: А - 105°С, Е - 120°С, В - 130°С, F - 155°С. В основном, трансформаторы, которые применяют в разных отраслях, имеют класс В. Заметим, что во время определения температуры перегрева, создают условия свободной воздушной конвекции вокруг трансформатора, при этом установка трансформатора в корпусе – это корректно. При разработке изделия, проектировщик должен учесть остальные источники тепла, которые возникают в одном корпусе с трансформатором. При превышении предельного значения температуры трансформатора, необходимо принять все возможные меры к принудительному охлаждению или отводу тепла (например, использовать для этого вентилятор). Важное условие, которое следует знать: номинальное напряжение вторичных обмоток маломощного трансформатора определяются для установившегося значения температуры перегрева. А именно, при температуре трансформатора в 25 градусов по Цельсию (при т.н. холодном состоянии трансформатора), номинальное напряжение вторичных обмоток выше, примерно на 20%, чем во время увеличения температуры трансформатора на 50°С.
Рассмотрим такой параметр, как испытательное напряжение рабочей частоты. Он характеризуется прочностью электричества трансформаторов, или, если точнее, способностью без пробоев выдержать напряжение указанной, в технических условиях, величины. Обычно производитель трансформаторов малой мощности проводит нормирование испытательного напряжения между выводами первичной обмотки и вторичной (стандартное значение параметра – 3500В), а также между выводами обмоток и частями, проводящими электричество в устройстве (стандартное значение параметра – 1750В).
При проведении расчетов, которые были подтверждены практикой, были сделаны следующие выводы по преимуществам тороидальных трансформаторов перед трансформаторами других типов:
-масса снизилась на 20-40 процентов, уменьшены габаритные размеры;
-снижены поля разброса (рассеяния) в несколько раз;
-ток холостого хода уменьшен в 3-4 раза;
-уровень шума значительно ниже;
-коэффициент полезного действия стал еще выше.
Если разработчик будет учитывать требования и рекомендации, описанные в данной статье, это позволит ему более корректно подойти к выбору трансформаторов малой мощности.